
Journal of Sound and <ibration (2000) 233(1), 1}17
doi:10.1006/jsvi.1999.2790, available online at http://www.idealibrary.com on
SOME EXPERIENCES ON PROGRAMMING OF TIME
DOMAIN BOUNDARY ELEMENT IN PARALLEL

PROCESSING ENVIRONMENT

L. G. THAM AND C. K. CHU

Department of Civil Engineering, ;niversity of Hong Kong, Hong Kong

(Received 28 July 1999, and in ,nal form 9 November 1999)

Numerical simulations of the transient dynamic response of single piles in homogenous
soil under vertical loads are carried out by using the time domain boundary element method.
The availability of parallel processing machine allows the programme for such analysis to be
parallelized. The real time taken for computing can thus be very much reduced. This paper
presents the experience gained in parallelizing the programme for the IBM 9076 Scalable
Powerparallel (SP2) System. Two coarse gain and one "ne grain parallelisms based on
various strategies are discussed. Parallel performance results obtained in terms of speed-up
and e$ciency are presented to demonstrate the high level of parallelism inherent in the time
domain BEM.

(2000 Academic Press
1. INTRODUCTION

The transient response of single pile embedded in soil under dynamic loadings has long
been an important research topic in geotechnical engineering. Precise analysis of the
complex problem by numerical methods has been developing rapidly in the last two
decades due to advances in computing power. Very robust and e$cient computational
schemes exist for the analysis of the problem, ranging from "nite element methods
(e.g., see reference [1]) to frequency domain boundary element methods [2]. Another school
of thought applies the time domain boundary element approach to tackle the problem
which possesses the potential to handle non-linear transient problems. It employs the
Stokes solutions for the singular fundamental functions of the displacements and tractions
in the Love integral equations, and solves the problems in time and space directly and
simultaneously.

In this paper, a scheme for analyzing transient vertical response of single piles by the time
domain method developed by Lei et al. [3] is adopted. The pile shaft is modelled by
a number of one-dimensional "nite elements while the soil domain is discretized and
analyzed by a general time domain BEM formulation in cylindrical co-ordinates. By virtue
of the Fourier decomposition theory, the BEM formulation is decomposed into several
independent ones in accordance with the Fourier terms, and only a one-dimensional
discretization is necessary along the boundaries of the soil domain. The two sets of BEM
and FEM equations are then coupled into one by applying the compatibility of
displacements and the equilibrium of the interactive forces between the interfaces of pile
shaft and soil domain. Linear spatial and quasi-linear time interpolation functions are
adopted for the tractions and "eld quantities.
0022-460X/00/210001#17 $35.00/0 (2000 Academic Press

2 L. G. THAM AND C. K. CHU
The "rst parallel implementation of BEM was suggested by Simkin [4] for integral
formulations of electromagnetic. A detailed implemention of BEM in a parallel
environment was reported by Symm [5] through the solution of the Dirichlet problem in
a circle by an array processor.

In many of the early applications, the parallelizations of BEM have been mainly at the
system-equation solution phase. Various attempts have exploited the coarse grain
parallelism using a vector processor on the problem of substructures in elastostatic analysis
[6}8]. Calitz and du Toit [9] used an integrated array processor to a!ect the solution phase
in an axisymmetric electromagnetic problem. Fine grain implementations for a variety of
linear and quadratic element problems were "rstly described by Davies [10}12] in the "eld
of potential problems.

In order to speed up the analysis, the computer program for the analysis was parallelized
and implemented on the IBM 9076 SP2 system which is a scalable parallel system based on
a distributed memory MIMD message-passing architecture. This paper outlines the
experiences on the parallelization of the time domain BEM. The parallelization strategies,
taking into account aspects such as partitioning of the data structures and scalability, are
discussed. The performance of the parallel code on the SP2 system is evaluated by using
a typical example of single pile.

2. BASIC INTEGRAL FORMULATION

In the case of a pile under the action of vertical excitations, it can be shown by using
Gra$'s dynamic reciprocal theorem [13] that Love's [14] integral identity in a cylindrical
co-ordinate system will have the form [3].

Cab MuPhÒ
N"Pq PC

AT (P);
ij

A(Q) MsQhÒ
N dCdq!Pq PC

AT (P)S
ij

A(Q) MuQhÒ
N dCdq (1)

in which i, j"x, y, z, and C is the surface of the domain. Here the body force is assumed to
be zero and the layer is initially at rest. P and Q are the position vectors for the receiver and
source points, and C

ij
"d

ij
!c

ij
(d

ij
is the Kronecker delta and c

ij
is the discontinuity term).

Also, ;
ij

and S
ij

are the fundamental displacement and traction singular solutions in
Cartesian co-ordinates, respectively, ub and sb are the Fourier components, in
circumferential direction, of the displacement and traction vectors of the source point Q on
the surface of the domain at time q, A(P) and A(Q) are the vector transformation matrices
for P and Q.

In the analysis, the total period ¹ is discretized into N constant time steps *t, that is,
¹"N *t. The "eld quantities (displacement and traction) between are interpolated by
quadratic time interpolation functions. The half-space is also discretized into a number of
nodal points (lines) along the spatial direction. Summing up the in#uence of the traction of
each element on point P, and letting P take up the position of every boundary node, the
integral equation of layer k is

N
+
n/1

[HM
0
]N,n
k

Mu
0
Nn~1
k

#

N
+
n/1

[HM
2
]N,n
k

Mu
0
Nn
k

"

N
+
n/1

[GM
0
]N,n
k

Ms
0
Nn~1
k

#

N
+
n/1

[GM
2
]N,n
k

Ms
0
Nn
k
. (2)

Noting the linear translation property in the time domain of the fundamental solutions
[15] and the continuity condition of the displacement and traction vectors within each time

PARALLEL COMPUTING 3
step, equation (2) can be rewritten as

N
+
n/1

[H]N~n`1,1
k

MuNn
k
"

N
+
n/1

[G]N~n`1,1
k

MsNn
k
. (3)

The above equation could then be coupled with the standard FEM equation of the pile in
the manner described by Lei [16] to calculate the unknown displacement (velocity and
acceleration) and traction vectors long the pile shaft:

[K] M;
p
NN"MPNN. (4)

3. BASIC ALGORITHM

Consider a problem with a total of N time-steps. The structure of the original serial code
is outlined below:

1. For each time-step, compute the elements of BEM coe$cient matrices [G] of equation
(2) by numerical integration.

2. Assemble the left-hand side of equation (3) and write matrices to disk.
3. For each time-step, compute the elements of BEM coe$cient matrices [H] of equation

(2) by numerical integration.
4. Assemble the right-hand side of equation (3) and write matrices to disk.
5. Form the characteristics matrices for the pile.
6. Read the BEM matrices coe$cients from disk and couple them with the pile matrices to

form a system of linear equations.
7. Solve the linear equation and calculate the unknown physical quantities.

4. MEASUREMENT FOR PERFORMANCE OF PARALLEL SCHEME

The performance of a parallel scheme can be measured in terms of the two parameters,
namely speed-up and e$ciency. The speed-up is a measurement of the improvement gained
by the parallel program with regard to a single processor. The speed-up is de"ned as

Speed-up"
user time for one processor

user time for N processors
.

It is controlled by both the inherent parallelism of the application and the e$ciency of the
system facilities. High speed-up implies that the computational time taken will be very
much reduced but it may be achieved by using a large number of processors, and therefore,
the e$ciency may not be high. The e$ciency of the scheme should be measured as speed-up
per processor, that is

E$ciency"
speed-up

number of processors used
.

In the present study, these two parameters will be used as indices for rating the
performance of the studied schemes.

5. PARALLELIZATION SCHEMES

Various parallelization schemes can be used to improve the performance of a serial
program for boundary element analysis. In the present study, the following three schemes

4 L. G. THAM AND C. K. CHU
have been studied:

1. Coarse grain parallelism by matrix partition.
2. Coarse grain parallelism by time-step partition.
3. Fine grain parallelism by numerical integration partition.

The details of each scheme will be described in the subsequent sections.
To compare the performance of the schemes, a typical example of a pile under axial load

is used. The pertinent parameters of the examples are as follows:

Length of pile/Radius of pile"50.
Density of pile/Density of soil"2)65.
Elastic modulus of pile/Elastic modulus of soil"124)4.
Velocity of shear wave (soil)"139)5 m/s.
Velocity of compression wave (soil)"412)5 m/s.

The Poisson ratio of soil"0)4.

5.1. COARSE GRAIN PARALLELISM BY MATRIX PARTITION

In analyzing the computer code of the time domain boundary element, it can be easily
noted that there is no communication and data I/O involved in between the routines for
forming the [G] and [H] matrices. Subroutine GC (Figure 1) forms the [G] matrix using
Figure 1. Flow chart for matrix partition parallelism.

TABLE 1

Performance of matrix partition

Case No of spatial elements Speed-up E$ciency (%)

1 15 1)20 59)82
2 21 1)19 59)35
3 27 1)23 61)39
4 35 1)22 60)89
5 39 1)28 63)88
6 43 1)26 62)87

PARALLEL COMPUTING 5
one processor (Processor 1) whereas subroutine HC forms the [H] matrix using another
processor (Processor 2). Therefore, these matrices can be formed independently and the
values of the coe$cients can be written into the corresponding [G] and [H] data "les for
temporary storage until the coupling with the pile sti!ness matrix.

Table 1 shows the performance of such a parallelization scheme. It is noted that the
performance values are relatively low: the speed-up and e$ciency are 1)2 to 1)3 and 60}63%
respectively. The low parallelization e$ciency is due to the inherited imbalance in work
load between the subroutines [GC] and [HC]. Of course, one may consider using
additional processors for forming the [H] matrix but it will involve re-coding and the
improvement is expected to be limited.

5.2. COARSE GRAIN PARALLELISM BY TIME-STEP PARTITION

This parallelization strategy is based on a domain decomposition approach applied in the
time dimension. From equation (3), it is obvious that the formation of the coe$cients for
[G] and [H] matrices are independent for each time-step, which for instance consists of the
following numerical integration operation for time domain BEM in cylindrical co-ordinates
[16]:

[g]n
k,m

"PC
m
P
2n

0
PDt

;abN dqru
2
d hdC,

[h]n~1@2
k,m

"PC
m
P
2n

0
PDt

SabN dqru
1
d hdC, (5)

where N is the shape function for temporal integration.
The formation of these matrix coe$cients are independent from each other at the time

dimension and can therefore be partitioned into parallel tasks in such a way that di!erent
processors are responsible for the numerical integration of matrix coe$cients for di!erent
segments of time-steps of the whole spatial mesh (for example, time-steps No. 1}5 for task 1,
No. 6}9 for task 2). The arrangement is independent of the number of processors available
for the problem and scalability is thus guaranteed. The diagrammatic scheme of this parallel
strategy is shown in Figure 2.

It is noted that the formation of [G] and [H] matrices at di!erent time-steps has di!erent
work loads, causing an overall load imbalance to the time-step partition parallelism when
the time-steps are distributed uniformly among the processors. A typical load distribution
pattern is shown in Figure 3.

Figure 2. Flow chart for time step partition parallelism.

6 L. G. THAM AND C. K. CHU
The reason for the load imbalance is that at the temporal integration during the
formation of each matrix coe$cient, the inequality condition

(N!n!1) C
s
Dt(r((N!n#1) C

p
Dt (6)

must be satisi"ed "rst in order for the spatial numerical integration to be carried out.
Otherwise, the trivial value of zero will be taken for the matrix coe$cient and the
time-consuming numerical integration procedures will be bypassed. Hence, some of
the matrix coe$cient formation will take longer computer time to complete. Moreover, the
problem is complicated by the fact that there are 36 di!erent cases of temporal integration

Figure 3. Load distribution among time-steps.

PARALLEL COMPUTING 7
formulae for use in the numerical integration process and each yields a di!erent
computational work load [15].

Since the geometry of the boundary element mesh and the position of the nodes are
unique in each analytical case, it is almost impossible to predict the distribution of
numerical integration to be carried out for a particular combination of physical parameter
and spatial boundary element mesh by any analytical formulae. The only possible way to
obtain the load pattern is by actually checking node by node for each time-step to
di!erentiate which cases a particular temporal integration formula would fall into [16].
This can be done automatically by a separate computer program or a subroutine within the
original program. As no actual numerical integration is being carried out, the computation
cost of this checking procedure is insigni"cant to the whole analysis. With the total number
of each temporal integration case for the whole job recorded, the overall work load pattern
can be simulated by multiplying the number of cases with the corresponding number of
arithmetic operations to be carried out under the cases. This predicted load pattern in the
form of a calculated number of arithmetic operations at each time-step can be used as
a basis for the allocation of time-steps to each processor in order to achieve a balanced
parallel computational analysis. It has been found that there are basically four types of load
distribution patterns under the combinations of di!erent boundary conditions (Figure 4).

To improve the performance of the program, a load-balancing subroutine is provided at
the program structure before commencement of the BEM formulation. The target is to
allocate time-steps to each processor such that the total number of arithmetic operations
allocated to a processor is the closest to the average number of arithmetic operations for
each processor. Starting from the "rst processor, the time-steps will be allocated to each
processor either in ascending or descending order continuously until that target average
load value has been reached. Then the next time-step will be shifted to the next processor
and a similar procedure will be repeated until all the time-steps have been allocated.
Whether the procedures are carried out in an ascending or descending order depends on
where the predicted peak loading is located at the earlier or latter time-steps respectively.
The purpose of this arrangement is to deal "rstly with heaviest work load time-steps when
the #exibility for allocation is greatest.

Figure 4. Load distribution patterns.

8 L. G. THAM AND C. K. CHU
The parallel programs for both with and without load balancing were run on di!erent
combinations of physical parameters and spatial BEM meshes. The resulting parallel
performance measurements of the program for a 56-time-step test job are listed in Tables
2 and 3.

It can be seen from the "gures in the above tables that when the number of processors is
small compared with the number of time-steps for the analysis, the parallel e$ciency
improves signi"cantly after the application of load balancing.

It is also noted that there is a general tendency for the parallel e$ciency to decrease as the
number of processors increases owing to a signi"cant degree of load imbalance in the time
partitioning. When the number of processors/the number of time-steps ratio is small,
near perfect load balancing could be achieved which results in a high parallel
e$ciency. However, as the number of parallel processors increases, the target number
of arithmetic operations allocated to each processor * the selection criteria for
load balancing * becomes smaller and smaller, which "nally approaches the values of
number of arithmetical operations for one time step. Since the number of time-steps
allocated to each processor can never be less than unity as the time-steps cannot be divided
any further, the #exibility of load balancing is greatly reduced as the number of processors

TABLE 2

Measured speed-up for di+erent numbers of processors

Number of processors Without load balancing After load balancing

Type 1 Type 2 Type 3 Type 4 Type 1 Type 2 Type 3 Type 4

4 2)49 2)97 2)75 2)50 3)17 3)62 3)49 3)75
7 4)14 5)17 4)83 4)18 5)37 5)84 6)37 6)44

14 8)18 10)05 9)51 8)91 6)38 11)27 12)71 11)20
28 16)13 19)99 18)99 16)19 5)85 20)10 19)11 7)47

TABLE 3

Measured parallel e.ciency for di+erent numbers of processors

Number of Without load balancing After load balancing
processors

Type 1 Type 2 Type 3 Type 4 Type 1 Type 2 Type 3 Type 4
(%) (%) (%) (%) (%) (%) (%) (%)

4 62)23 74)20 68)64 62)55 79)16 90)58 87)16 93)73
7 59)17 73)87 68)89 59)73 76)78 83)41 90)99 92)04

14 58)45 71)80 67)95 58)47 45)56 80)52 90)45 80)02
28 57)61 71)39 67)81 57)82 20)89 71)78 67)96 26)67

PARALLEL COMPUTING 9
increases. Nevertheless, despite this deterioration in load balancing #exibility, the use of
higher number of parallel processors for the analysis still represents a substantial gain in
speed-up from the original serial computation, as shown in Table 2.

In order to "nd the relationship between the processor/time-step ratio and the
parallel e$ciency for the load balancing procedures, more tests have been carried out
with di!erent combinations of number of time-steps and number of processors. For
example, if the number of time-steps for the analysis is 32 and the number of processors
available is 8, then the ratio equals to 0)25. A higher ratio means that the number
of processors utilized for the analysis is higher and hence the #exibility for load
balancing decreases. The average values of parallel performance measured are
compared with the values obtained without load balancing. The results are summarized in
Figure 5. When the value of the ratio is higher than 0)35, it is observed that the
load balancing procedure actually has an adverse e!ect on the parallel performance
which is lower than the cases without load balancing. Therefore, it its not recommended
to apply the load balancing subroutine if the value of the processor/time-step ratio is
higher than 0)35. This can be done by adding a condition line into the program to
determine whether the load-balancing subroutine instead of an even distribution of
time-steps should be carried out, by checking the value of processor/ time-step ratio.
As such, an average minimum parallel e$ciency of about 60% for the time-step
partition parallelism could be maintained. Therefore, for the case of using 28 processors,
the speed-up obtained using this time-step partition parallelism would be at least 16)8, that
is, the parallel code can be completed in a time 16)8 times shorter than the original serial
code.

Figure 5. Parallel e$ciency versus processor/time-step ratio.

10 L. G. THAM AND C. K. CHU
5.3. FINE GRAIN PARALLELISM BY NUMERICALLY INTEGRATION PARTITION

The third approach explores the possibility of parallelization of the numerical integration
processes which are commonly found in boundary element analysis. Individual
matrix coe$cients for the integral equation system consists of integrals which are two
dimensional in space with an additional time dimension integration such as the following
example [16]:

[g]n~1m,m "P
2n

0
P

1

~1
PDt

;abNdq u
2
r D J

m
Ddgdh, (7)

where N is the shape function for temporal interpolation.

PARALLEL COMPUTING 11
In obtaining the values of these coe$cients, the integration over time dimension is
calculated analytically while the 2-D spatial integration is calculated numerically by
applying the Gauss}Legendre integration formula [17]:

P
l

~1
P

l

~1

f (m, g) dmdg"
M
+
i/1

N
+
k/1

f (m
i
, g

k
) w

i
w

k
, (8)

where m
i
and g

k
are the Gaussian points, and w

i
and w

k
are the associated quadrature

weights. f (m, g) is the function to be integrated. Hence, the spatial integration in two
dimensions is calculated by two summation series and this same process is repeated for
every matrix coe$cient. In devising the current "ne grain parallel strategy, the outer
summation series from i"1 to M for w

i
can be partitioned into parallel tasks such that each

processor will calculate a part of the summation series. For best parallel e$ciency and
minimum load imbalance, the summation steps taken by each processor should preferably
be evenly distributed and identical to each other. After all the partial summations are
completed by individual processors, the results of the partial sums are transmitted to the
&&parent'' processor for calculating the "nal overall sum. This "nal sum will be the value of
the matrix coe$cients and stored in the memory of the &&parent'' processor before writing to
the [G] and [H] matrices "les after the completion of subroutines GC and HC. During the
process, synchronization is required to ensure the accurate passage of message and smooth
running of the program. The procedure will be repeated for another matrix coe$cient and
so on until the whole [G] and [H] matrices have been formed. The parallel partial
summations for a matrix coe$cient will be carried out one by one in a sequential manner to
reduce the demand for memory bu!er to store the partial summation values.

Consider a 100-numerical-summation-step program running on a 4-processor parallel
environment; the parallelism can be summarized in the #ow chart as shown in Figure 6.
Using a typical example, the speed-up and e$ciency of this scheme was studied and the
results are presented in Figures 7 and 8. It can be observed that the speed-up achieved for
the analysis increases as the number of processors increases. In both the speed-up and
e$ciency charts, it is particularly interesting to note that when the value of the number of
parallel processors is equal to 2, 4, 5, 10, 20 and 25, the parallel performance is remarkably
higher than that of the other values. These values are factors of 100, i.e., the total number of
summation steps adopted for the numerical integration of the program. Only at these values
can the numerical integration be evenly distributed among the processors. For the values of
number of parallel processors which are not factors of 100, some of the processors would be
allocated with more summation steps while some with lesser for each numerical integration
carried out during the formulation of the [G] and [H] matrices. The processors with fewer
summation steps would waste more time on idling while waiting to send the result of the
partial summations to the &&parent'' processor because they have to wait until every
processor has completed its partial summation, due to synchronization call at the program.

As shown in Figure 9, the overhead time utilized by non-factor values of number of
processors is much higher than that of the factor ones.

A comparison of the balance of work load for di!erent values of number of parallel
processors is presented in Figures 10 and 11. Figure 10 shows the load balancing chart when
the program runs on 20 processors. In this case, each processor would carry out "ve
summation steps for the numerical integrations. The total load for each processor appears
to be evenly balanced with a shape of perfect circle, again due to the synchronization. The
overhead time for each processor is also very low, at only about 18% of the total time. It
consists of mainly the communication time between the 19 processors with the &&parent''
processor, No. 0, and also the idling time by the 19 processors when Processor No. 0 is

Figure 6. Flow chart for "ne grain parallelism by numerical integration partition.

12 L. G. THAM AND C. K. CHU
carrying out activities other than numerical integrations. On the other hand, Figure 11
which shows the load balancing for 21 parallel processors is quite di!erent from Figure 10.
The overhead times for individual processors are much higher than those for 20 processors,
and they also di!er from each other. For a job with 21 parallel processors, the processors
no. 0, 4, 8, 12 and 16 are allocated with only four summation steps in the numerical
integration while the other processors are allocated with "ve steps. As seen from the load
balancing chart, all of the processors allocated with four steps, with the exception of
Processor No. 0 which is the &&parent'' processor, have utilized more overhead time than the
other processors allocated with "ve steps. Although they have been allocated with less

Figure 7. Speed-up versus number of parallel processors.

PARALLEL COMPUTING 13
work load, they have spent more time on waiting to send the partial summation result than
the other processors which have one more summation step to do. It has an accumulative
e!ect on the idling time, causing the much higher values in the overhead time. Hence, it
demonstrates the importance of a balanced load among processors on the overall parallel
performance of the program.

Another important factor governing the amount of overhead time of a parallel job in the
current parallelism is the number of processors utilized. It can be observed from Figure
7 that the parallel e$ciency decreases as the number of parallel processors increases. It is
obvious that as the number of processors increases, the amount of inter-processor
communication increases. There are two major e!ects: (i) increasing the number of
communication; (ii) elongating the path of communication. This is a common disadvantage
for any communication-intensive parallelization scheme running on a distributed memory
MIMD machine. When the number of processor is 21}24, the overhead time is more than

Figure 8. Parallel e$ciency versus number of parallel processors.

14 L. G. THAM AND C. K. CHU
half of the total CPU time cost. But despite this, the parallel job is still more than nine times
faster than the original serial job and it has fully demonstrated the power of parallel
computing.

6. CONCLUSIONS

Three di!erent parallelisms of a time domain boundary element method for the analysis
of transient response of vertically loaded single piles are presented. The parallelisms are
designed according to di!erent approaches on partitioning of the original serial problem
and di!erent degrees of inter-processors communications. The performance of the parallel
programs written according to the di!erent parallelisms has been measured through the

Figure 9. Breakdown of computer time utilized for di!erent numbers of processors.

Figure 10. Load-balancing chart for 20 processors. ** Total time; **] communication time.

PARALLEL COMPUTING 15
implementation of the programs on the IBM 9076 SP2 parallel computer with problems of
di!erent boundary conditions.

The matrix partition parallelism has an inherent load imbalance which prohibits its
parallel e$ciency. The e$ciency of the time-step partition parallelism is also a!ected by the
load imbalance due to the integration at the time dimension but this can be overcome by
load-balancing procedures. The load-balancing issue does not present a big problem to the
numerical integration partition parallelism but its e$ciency is limited by the expensive
overhead costs required by the transfer of the essential data during the merging of
integration. Both the matrix partition and time-step partition parallelisms are highly
portable, which means that the programmes written for these parallelisms can be easily

Figure 11. Load-balancing chart for 21 processors: ** Total time; *K* Communication time.

16 L. G. THAM AND C. K. CHU
transfered from one MIMD computer platform to another. On the other hand, it would be
more di$cult to transfer the numerical integration partition parallelism as all the
message-passing subroutines have to be modi"ed to suit each environment.

REFERENCES

1. G. W. BLANEY, E. KAUSEL and J. M. ROESSET 1976 Proceedings of the 2nd International
Conference on Numerical Methods in Geomechanics, 1001}1012. Dynamic sti!ness of piles.

2. R. SEN, T. G. DAVIES and P. K. BANERJEE 1985 Dynamic analysis of piles and pile groups
embedded in homogeneous soils. International Journal of Earthquake Engineering and Structural
Dynamics 13, 53}65.

3. Z. X. LEI, Y. K. CHEUNG and L. G. THAM 1993 Soil Dynamics and Earthquake Engineering 12,
37}49. Vertical response of single piles: transient analysis by time-domain BEM.

4. J. SIMKIN 1982 IEEE ¹ransactions on Mangnetics MAG-18, 401}405. A comparison of integral
and di!erential equation solutions for "eld problems.

5. G. T. SYMM 1984 Engineering Analysis 1, 162}165. Boundary elements on a distributed array
processor.

6. D. G. BOZEK, D. M. CIARELLI, K. J. CIARELLI, M. F. HODOUS, R. B. KATRICK and K. A. KLINE

1983 DEF Bulletin de la Direction des Etudes et Recherches, Serie C-Mathematique, Vol. 1, 87}94.
Vector processing applied to boundary element algorithms on the CDC Cyber-205.

7. K. A. KLINE, N. K. TSAO and C. B. FRIEDLANDER 1985 Advanced ¹opics in Boundary Element
Analysis, AMD-72 (T. A. Cruse, A. B. Pifko and H. Armen, editors), 257}269. New York: ASME.
Parallel processing and the solution of boundary element equations.

8. J. H. KANE, B. L. K. KUMAR and S. SAIGAL 1990 Computational Methods in Applied Mechanics
and Engineering 79, 219}244. An arbitrary condensing, non-condensing solution strategy for large
scale, multi-zone boundary element analysis.

9. M. F. CALITZ and A. G. DU TOIT 1988 IEEE ¹ransactions on Magnetics, MAG-24, 427}430. CAD
system for cylindrically symmetric electric devices.

10. A. J. DAVIES 1988 Parallel Computing 8, 348}353. The boundary element method on the ICL
DAP.

11. A. J. DAVIES 1988 Boundary Elements X, Vol. 3 (C. A. Brebbia, editor), 657}666. Berlin:
Springer-Verlag. Quadratic isoparametric boundary elements on the ICL DAP.

PARALLEL COMPUTING 17
12. A. J. DAVIES 1989 CONPAR 88 (C. R. Jesshope and K. D. Reinartz, editors), 230}237. Cambridge:
Cambridge University Press. Mapping the boundary element method to the ICL DAP.

13. D. GRAFFI 1946 Memorie della accademia delle scienze, Series 10, 103. Sul theorema di reciprocta
nella dinamica dei corpo elas - ticiti.

14. A. E. H. LOVE 1904 Proceedings of ¸ondon Mathematical Society 2, 231}344. The propagation of
wave motion in an isotropic elastic medium.

15. W. J. MANSU and C. A. BREBBIA 1982 Applied Mathematical Modelling 6, 299}306. Numerical
implementation of the boundary element method for two-dimensional transient scalar wave
propagation problems.

16. Z. X. LEI 1993 Ph.D. ¹hesis, ;niversity of Hong Kong, Department of Civil and Structural
Engineering. Time domain boundary element method & its applications.

17. A. H. STROUD and D. SECREST 1966 Gaussian Quadrature Formulas. Englewood Cli!s, NJ:
Prentice-Hall.

	1. INTRODUCTION
	2. BASIC INTEGRAL FORMULATION
	3. BASIC ALGORITHM
	4. MEASUREMENT FOR PERFORMANCE OF PARALLEL SCHEME
	5. PARALLELIZATION SCHEMES
	Figure 1
	TABLE 1
	Figure 2
	Figure 3
	Figure 4
	TABLE 2
	TABLE 3
	Figure 5
	Figure 6
	Figure 7
	Figure 8

	6. CONCLUSIONS
	Figure 9
	Figure 10
	Figure 11

	REFERENCES

